Structure and magnetic properties of mechanically alloyed Sm_xCo_{1-x}

J. Ding, P. G. McCormick and R. Street

Research Centre for Advanced Mineral and Materials Processing, The University of Western Australia, Perth, WA. 6009 (Australia)

(Received July 17, 1992)

Abstract

A study of the phase structure and magnetic properties of mechanically alloyed and heat-treated $\text{Sm}_x \text{Co}_{1-x}$ with x=0.13 to 0.24 has been carried out. Remanence enhancement above 0.5 M_s (M_s = saturation magnetisation) was found in samples with x=0.12 to 0.17 after annealing at 700 °C. A maximum energy product of 16.6 M G Oe was measured for $\text{Sm}_{0.13}\text{Co}_{0.87}$. Coercive forces above 50 kOe were obtained for x=0.17-0.20 after heat treatment at approximately 800 °C. The highest value of 57 kOe was measured for $\text{Sm}_{0.19}\text{Co}_{0.81}$.

1. Introduction

Sm-Co magnets based on the $SmCo_5$ and Sm_2Co_{17} phases have been widely used since their discovery in the 1960s [1]. Both phases exhibit high Curie temperatures and high values of saturation magnetisation and anisotropy field.

The synthesis of a number of rare earth-transition metal alloys by mechanical alloying has been reported recently [2-8]. Optimally heat-treated structures have been shown to exhibit exceptionally high coercivities and isotropic behaviour associated with nanocrystalline microstructures. Wecker et al. [6] obtained coercive forces of 30 kOe and 6 kOe respectively in mechanically alloyed SmCo₅ and Sm₂Co₁₇. Liu et al. [7, 8] recently reported the direct synthesis of SmCo₅ by the chemical reduction of Sm₂Co₃ and SmF₃ during mechanical alloying. Giant coercive forces of over 65 kOe were exhibited in specimens prepared from SmF_3 [8]. In this paper we report the results of a study of the effect of Sm concentration and heat treatment on the structure and magnetic properties of mechanically alloyed Sm-Co alloys.

2. Experimental details

The starting materials used in this study were 99.9% pure Sm (-40 mesh) and Co (-50 mesh) powders. The mechanical alloying was performed in a hardened steel vial with three 12 mm steel balls for 12 h. The as-milled powders were pressed into disk-shaped specimens, which were heat treated for 30 min at temperatures of 500–1000 °C under a vacuum of 2×10^{-7} Torr [5].

The powders were examined by X-ray diffraction using a Siemens D5000 diffractometer with monochromatic CuK α radiation. Magnetic properties were measured at room temperature using a vibrating sample magnetometer (type VSM3001, Oxford Instrument Company) with a maximum applied field of 120 kOe.

3. Results and discussion

3.1. Structure

All powders after mechanical alloying were found to be amorphous on examination with X-ray diffraction, as indicated in Fig. 1 for the as-milled $Sm_{0.15}Co_{0.85}$ powder.

Crystallisation occurred on heating to 500–600 °C for all of the mechanically alloyed powders. The X-ray diffraction patterns indicated that powders consisted of randomly oriented nanocrystalline grains. The average powder particle size was estimated from scanning electron microscopy (SEM) to be approximately 1 μ m.

For the Sm concentration x=0.15, which is lower than the Sm concentration of the stoichiometric composition of SmCo₅ (*i.e.* Sm_{0.167}Co_{0.833}), the TbCu₇-type phase [9] (disordered Sm₂Co₁₇ phase) was formed as a main phase after heat treatment at annealing temperatures, T_a , less than 800 °C. This is shown in Fig. 1. At higher annealing temperatures, a mixture of SmCo₅ (CaCu₅ structure) and Sm₂Co₁₇ (Th₂Zn₁₇ structure) [1] was found (Fig. 1).

Saito *et al.* [10] have reported the formation of the TbCu₇-type phase in Sm_2Co_{17} ribbons prepared using melt-spinning at high roll velocities. The Th₂Zn₁₇-type

Fig. 1. X-ray diffraction patterns of $Sm_{0.15}Co_{0.85}$ powders as-milled and annealed at 600–900 °C for 30 min.

phase was the dominant phase at low roll velocities. The magnetic properties of the TbCu₇-type phase (*i.e.* Curie temperature, saturation magnetisation and anisotropy field) are similar to those of the Sm_2Co_{17} phase [10].

For Sm concentrations, x = 0.17-0.18, the X-ray diffraction patterns indicated that a mixture of the TbCu₇type and the CaCu₅-type phases was formed at annealing temperatures below 800 °C. Heat treatment at $T_a \ge 800$ °C led to the formation of nearly single SmCo₅ phase in powders for compositions of Sm_xCo_{1-x} with x=0.17-0.19. A very small amount of Sm₂Co₁₇ with the Th₂Zn₁₇ structure was also present in powders with x=0.17 and 0.18.

Samples of $\text{Sm}_x\text{Co}_{1-x}$ with x=0.2-0.22 contained SmCo₅ and Sm_2Co_7 (Ce₂Ni₇ structure) [1] after annealing between 600 °C and 900 °C. As expected, the amount of the 2–7 phase in $\text{Sm}_{0.22}\text{Co}_{0.78}$ was significantly larger than in $\text{Sm}_{0.2}\text{Co}_{0.8}$. This 2–7 phase possesses a high anisotropic field (greater than 220 kOe [11]), similar to that for SmCo₅ (about 300 kOe [1]). The magnetic moment per Co atom has been estimated to be approximately equal to that for SmCo₅ [12]. The lower saturation magnetisation of 600–700 G for the 2–7 phase [13] relative to that for SmCo₅ (891 G at room temperature) is the result of the higher Sm content, since Sm has a much lower magnetic moment per atom (about 0.5 μ_B [12]) than that of Co atoms.

The SmCo₃ phase was identified as the main phase in Sm_{0.24}Co_{0.76} powders at annealing temperatures of 600–900 °C. Minor phases of Sm₂Co₇ and SmCo₅ were also found in the powders. The amount of these minor phases increased with increasing annealing temperature, due to Sm vaporisation.

3.2. Magnetic properties

Samples of $\text{Sm}_{0.15}\text{Co}_{0.85}$ exhibited a relatively high magnetic remanence M_r of about 600 G after heat treatment at 600–700 °C. This value is higher than that expected of an aggregate of randomly oriented grains, for which M_r should equal 0.5 M_s . (The values of saturation magnetisation are 891 G and 995 G for the SmCo₅ and Sm₂Co₁₇ phases respectively [1].) Remanence enhancement was also found in Sm_{0.13}Co_{0.87} powders after annealing at 600–700 °C. In these samples M_r was measured to be greater than 700 G (Fig. 2), which is about 70% of the saturation magnetisation for Sm₂Co₁₇ ($M_s = 995$ G). The maximum magnetisation of 961 G for this sample measured at 120 kOe is very close to M_s .

The remanence enhancement observed here is similar to that reported by Coehoorn et al. [15] who found that the remanence of Nd₄Fe₇₈B₁₈, which contained mainly the soft magnetic phase Fe₃B and about 15% hard magnetic Nd₂Fe₁₄B phase after crystallising amorphous melt-spun ribbons at 675 °C, reached 955 G (1.2 T) corresponding to 70-80% of M_s . This sample also exhibited a coercivity of 3 kOe, which is not expected for a material containing 85% of the soft magnetic phase Fe₃B, if the demagnetisation of the soft phase is independent of the presence of 15% of the hard magnetic phase $Nd_2Fe_{14}B$. This enhancement of M_r above 50% of M_s for melt-spun Nd–Fe–B ribbons with low Nd concentration has also been observed by other authors [16–18] and has been explained by the exchange interaction associated with a nanoscale mixture of two

Fig. 2. Hysteresis loop of $Sm_{0.13}Co_{0.87}$ annealed for 30 min at 700 $^{\circ}C.$

or three phases [15–18]. Manaf *et al.* [19] have found that the enhancement of M_r above $0.5 M_s$ can be obtained in melt-spun Nd-Fe-B ribbons consisting of nearly single Nd₂Fe₁₄B phase, if the ribbons contained very small grains ($M_r = 1.13$ T for ribbons with grain size of less than 30 nm [19]). The enhancement of the remanence in the Sm_xCo_{1-x} system observed here can be similarly explained by the exchange interaction between nanocrystalline grains of the TbCu₇-type and SmCo₅ phases, while a very small grain size of about 5 nm (for Sm_xCo_{1-x} with x=0.13 and x=0.15 after a heat treatment at 600 °C) was estimated using transmission electron microscopy.

The enhancement of the remanence to above $0.5 M_s$ significantly increased the maximum energy product $(BH)_{max}$. The highest value was found to be 16.6 M G Oe for $Sm_{0.13}Co_{0.87}$. In comparison, the $(BH)_{max}$ of isotropic samples with $M_r = 0.5 M_s$ equals 10 M G Oe (i.e. 25% of the theoretical $(BH)_{max}$ value [1]). The shape of the hysteresis loop (Fig. 2) is very similar to those of Nd-Fe-B ribbons with high remanence resulting from grain interaction [15-19]. The Sm_{0.15}Co_{0.85} samples annealed at 600-700 °C possessed a higher coercive force of 20-25 kOe. However, the (BH)_{max} value of about 13 M G Oe was lower than that for Sm_{0.13}Co_{0.87}, because of the lower remanence for Sm_{0.15}Co_{0.85}. The values of (BH)_{max} for Sm_{0.15}Co_{0.85} powders decreased with increasing annealing temperature, apparently because of the effect of increasing grain size. The $(BH)_{max}$ value of 8.4 M G Oe after annealing at 900 °C is less than that for isotropic SmCo₅.

Remanence enhancement was also observed for the higher Sm concentrations of x = 0.17 and x = 0.18 (Fig. 3). Samples annealed at $T_a < 800$ °C contained a mixture of the SmCo₅ phase and the TbCu₇-type phase, and

the hysteresis loops were similar to that shown in Fig. 2. The energy product values were about 13 M G Oe and 10 M G Oe for x=0.17 and x=0.18 respectively, while coercive forces of 25–35 kOe were observed. The enhancement of the remanence was not so large as that for lower Sm concentrations (x=0.11-0.15), because of the increase of the amount of the SmCo₅ phase. The ratio of M_r/M_s decreased with the Sm concentration.

As shown in Fig. 3, the coercivity values increased sharply with increasing T_a from about 30 kOe at $T_a = 700$ °C to 50–55 kOe at $T_a \ge 800$ °C for x = 0.17 and x = 0.18(Fig. 3). This increase in H_c is associated with the phase transition from a mixture of the TbCu₇-type phase and the SmCo₅ phase into nearly single SmCo₅ phase with a very small amount of the Th_2Zn_{17} -type phase. The hysteresis loops for samples annealed at $T_a \ge 800$ °C clearly showed two independent phases associated with the presence of Sm₂Co₁₇ (causing a small step and having coercive force of 7-8 kOe) and SmCo_s. The remanence of 400-450 G was near that of isotropic samples without grain interaction (i.e. 0.5 $M_{\rm s}$). The slight increase of $M_{\rm r}$ with the annealing temperature in the range 800-1000 °C in Fig. 3 was caused by the increasing amount of the Sm2Co17 resulting from Sm vaporisation.

For samples of $\text{Sm}_x \text{Co}_{1-x}$ with x=0.2-0.24, H_c and M_r were not strongly dependent on the annealing temperature. For samples with x=0.2, the remanence decreased somewhat with increasing annealing temperature, from 600 G for samples annealed at 600 °C to 540 G for samples heated at 800 °C. For higher Sm contents M_r was nearly independent of T_a .

In Fig. 4 the maximum value of H_c obtained at each composition is plotted as a function of x. High coercive forces of $H_c \ge 50$ kOe were achieved for Sm concen-

Fig. 3. Coercive force H_c and remanence M_r of $\text{Sm}_x \text{Co}_{1-x}$ with x=0.17 and x=0.18 as a function of annealing for 30 min at temperatures T_a .

Fig. 4. The highest obtained coercive force H_c with the measured maximum magnetisation M_{max} (at 120 kOe) and the remanence M_r as a function of the Sm concentration x in Sm_xCo_{1-x} with x=0.17-0.24.

Fig. 5. Hysteresis loop of the $Sm_{0.19}Co_{0.81}$ sample after heat treatment for 30 min at 800 °C.

trations in the range x=0.17-0.20, in agreement with the findings of previous studies [1, 8, 20, 21], showing that a small excess of Sm over that required for stoichiometric SmCo₅ increases coercivity. The sharp decrease of H_c , M_r and the maximum magnetisation M_{max} (measured at 120 kOe) at x=0.24 results from the presence of SmCo₃, which has a low magnetic moment per Co atom and a low Curie temperature, as a main phase.

The highest coercive force H_c of 57.1 kOe was found for Sm_{0.19}Co_{0.81} powder annealed at 800 °C (Fig. 5). The remanence of about 400 G was somewhat smaller than the theoretical value of about 450 G (0.5 M_s). Measurements of the remanence M_r and H_c as functions of the applied field showed that M_r and H_c were not saturated at the maximum applied field of 120 kOe, which is less than half of the anisotropy field for SmCo₅ (about 300 kOe [1]).

Similar giant coercive forces for SmCo₅ with a slight Sm excess have been reported previously, for example, $H_c = 67.5$ kOe for plasma-sprayed film [20], $H_c = 55$ kOe for sintered SmCo_{5-y} samples [21] and 65 kOe for SmCo₅ synthesised by the reduction of SmF₃ [8] during mechanical alloying. Since the coercivity mechanism of sintered SmCo₅ magnets is generally accepted to be controlled by nucleation [1], it is of significance to study the coercivity mechanism for mechanically alloyed nanocrystalline SmCo₅ powders.

4. Summary

The magnetic behaviour of mechanically alloyed Sm_xCo_{1-x} alloys is dependent on the phases formed

during crystallisation of the as-milled amorphous structure. For x < 0.19 a mixture of the TbCu₇-type and SmCo₅ phases was formed after annealing at temperatures $T_a \leq 800$ °C; SmCo₅ and a small amount of the Sm₂Co₁₇ phase were observed after heat treatment at $T_a \geq 800$ °C. Higher Sm concentrations with x = 0.2-0.22resulted in formation of the Sm₂Co₇ phase. For x = 0.24, the SmCo₃ phase was found to be the main phase present.

Samples annealed at $T_a \leq 700$ °C exhibited remanence enhancements of about 0.7 M_s for x = 0.13 and x = 0.15, similar to that found in NdFeB alloys [15–19]. This behaviour appears to be the result of exchange interactions between magnetically coupled nanocrystalline phases. This remanence enhancement resulted in increased values of the maximum energy product $(BH)_{max}$, which was measured to be 16.6 M G Oe and 13.3 M G Oe for Sm_{0.13}Co_{0.87} (annealed at 700 °C) and Sm_{0.15}Co_{0.85} (annealed at 600 °C) respectively.

The sharp increase of the coercive force in samples of $\text{Sm}_x\text{Co}_{1-x}$ with x=0.17-0.19, annealed at temperatures above 800 °C is associated with the formation of SmCo₅ nanocrystals as the principal phase. The highest coercive force H_c of 57.1 kOe was exhibited by Sm_{0.19}Co_{0.81} samples annealed at 800 °C.

References

- 1 K. J. Strnat, in E. P. Wohlfarth and K. H. J. Buschow (eds.), Ferromagnetic Materials, Vol. 4, 1988.
- 2 L. Schultz, J. Wecker and E. Wellstern, J. Appl. Phys., 61 (1987) 3583.
- 3 L. Schultz, K. Schnitzke and J. Wecker, J. Magn. Magn. Mat., 83 (1990) 245.
- 4 K. Schnitzke, L. Schultz, J. Wecker and M. Katter, Appl. Phys. Lett., 57 (1990) 2853.
- 5 J. Ding, P. G. McCormick and R. Street, J. Alloys Comp. (1992) submitted for publication.
- 6 J. Wecker, M. Katter and L. Schultz, J. Appl. Phys., 69 (1991) 6058.
- 7 Y. Liu, M. P. Dallimore, P. G. McCormick and T. Alonso, *Appl. Phys. Lett.* (1992) submitted for publication.
- 8 Y. Liu, M. P. Dallimore, P. G. McCormick and T. Alonso, in preparation.
- 9 Y. Khan, Acta Cryst., B29 (1973) 2502.
- 10 H. Saito, M. Takahashi, T. Wakiyama, G. Kido and H. Nakagawa, J. Magn. Magn. Mat., 82 (1989) 322.
- 11 K. H. J. Buschow, J. Less-Common Met., 33 (1973) 311.
- 12 K. H. J. Buschow, in E. P. Wohlfarth (ed.), Ferromagnetic Materials, Vol. 1, North-Holland, Amsterdam, 1980, p. 297.
- 13 T. Inoue and K. Goto, in M. Takahashi et al. (eds.), Proc. Int. Symp. of Magn. Mat., Sendai, April 8-11, 1987, Singapore World Scientific, Sendai, p. 206.
- 14 E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc., A240 (1948) 599.
- 15 R. Coehoorn, D. B. de Mooij, J. P. W. B. Duchateau and K. H. Buschow, Jour. de Phys., C8 (1988) 669.

- 16 B. X. Gu, H. R. Zhai and B. G. Shen, Phys. Rev., B42 (1990) 10648.
- 17 D. Echert, K. H. Muller, A. Handstein, J. Schneider, R. Grossing and R. Krewenka, IEEE Trans. Magn., 26 (1990) 1834.
- 18 E. F. Kneller and R. Hawig, IEEE Trans. Magn., 27 (1991) 3588.
- 19 A. Manaf, M. Leonowitz, H. A. Davis and R. A. Buckley, 12th Int. Workshop on Rare-Earth Magn. and Their Appl., Canberra, July 12-15, 1992, High-Perm Lab., RCAMMP, University of Western Australia, p. 1. 20 K. Kumar, D. Dasand and E. Wettstein, J. Appl. Phys., 49
- (1978) 2053.
- 21 F. J. Á. den Broeder and H. Zijlstra, J. Appl. Phys., 47 (1976) 2688.